
Verifying the Integrity of Shared Libraries

Richard Paul
Software Engineering

The University of Auckland
rpau013 @ec.auckland.ac.nz

Abstract

Users of modern operating systems are susceptible to mali-
cious programs being executed unknowingly or maliciously
modified programs being run under the guise of valid pro-
grams. In order to protect computers from malicious agents,
the access of programs should be limited. This limiting may
only occur reliably if the program authentication method
can verify the integrity of the program. The authentica-
tion of a program becomes complicated when the programs
use shared library routines. The integrity of these pro-
gram dependencies may be compromised leading to unex-
pected outcomes when utilised. This paper explores meth-
ods for verifying the integrity of programs that utilise one
or more library routines and the security each method pro-
vides. These methods primarily include the use of crypto-
graphic hashes and the SPEF system.

1. Introduction

Computers in home, business and educational settings
are increasingly storing private and sensitive data. This data
needs to be protected against the threat of malicious attacks
primarily through the Internet.

Such security can be achieved through the use of closed
systems. These closed systems do not allow users to add
additional peripherals or software to the machine and hence
are inflexible and unlikely to be accepted by the public for
general computing needs. In order to secure an open sys-
tem, a computer must provide users with a system of re-
stricting which programs may be executed and what ac-
cess rights are associated with them. To provide such a
secure solution based on this restricted execution environ-
ment, programs need to be authenticated by a monitor. To
trust the monitor, the monitor needs to verify itself against
a reference, the most common solution is that of a secure
hardware device that can primarily authenticate the moni-
tor and also allow the monitor to authenticate future exe-
cution requests. All security systems outlined in this pa-
per, namely Microsoft’s Next Generation Secure Comput-

ing Base (NGSCB) [1], Terra [2] and SPEF [3] use hard-
ware to verify the monitors integrity.

Verifying the integrity of a program is relatively trivial
when the program is self-contained, i.e. it does not make
calls to library routines. It becomes difficult to guarantee
that a program is running securely when it utilises shared
link libraries as all of these utilised libraries must also be
verified.

This paper explores methods for verifying the integrity
of programs that utilise one or more library routines. Ini-
tially a background is given on trusted computing, the prob-
lem domains are then explained. An explanation of two in-
tegrity verification methods is given, followed by a discus-
sion of the strengths and weaknesses of the two methods.

2. Background

Verifying the integrity of a program is essential for se-
cure computing. It allows a monitor to detect potentially
malicious code and inhibit it from running thus allowing
only trusted programs to run.

Due to the complexity of modern programs and the de-
velopment efficiency achieved through reusing standard li-
braries, it appears the use of shared libraries will continue to
play a significant role in future software development. It is
through these shared libraries that complexity arises when
trying to verify the integrity of a program. Through the use
of libraries the control sequence of a program can no longer
be determined by the inspection of just one executable. In-
stead all library routines utilised by the executable must also
be identified and verified. Performing such identifications
may prove difficult and time consuming when a program
utilises a large number of libraries.

The security risk of compromised libraries is of great
concern. A library may be altered to perform entirely dif-
ferent and potentially malicious operations to those origi-
nally intended, causing problems with the calling program
as well the direct effect of the malicious operations (see fig-
ure 1). Possibly a worse effect could be the injection of
malicious code in to a library, while still maintaining the
libraries functionality. Such injections may allow library

1



Verifying the Integrity of Shared Libraries

routines to continue with little or no difference in output
or performance while also executing malicious operations.
Such an attack would be difficult to discover.

In the event that compromised libraries are utilised by a
process running with the highest security level of the com-
puter, e.g. root access on a Unix machine, the compromised
library may potentially have access rights to alter or control
practically all aspects of the computer. Such compromises
pose a serious threat to integrity of a computer system.

Figure 1. An altered library running malicious
code.

3. Integrity Verification Methods

To identify programs accurately a reliable and trusted
means of identification needs to be implemented. The
Trusted Computing Group [4]“...develops and promotes
open industry standard specifications for trusted computing
hardware building blocks and software interfaces...”It is
through this group that the Trusted Computing Platform Al-
liance (TCPA) standards have been developed. These stan-
dards describe the features a trusted computer must incor-
porate to comply with the open standard for trusted comput-
ing. While the TCPA provides a standard for trusted com-
puting, it is not unanimously seen as a complete or perfect
solution [5][6].

3.1. Cryptographic Hash

Both Microsoft’s NGSCB and Terra are implementations
based on the TCPA standards. Using NGSCB terminology,
a cryptographic hash is created on the executable file. This
hash is known as theCode IDand allows for code-based
access control. This code ID is stored with in a secure en-
vironment on the operating system and the security mecha-
nism can query the code ID repository to see if the program
requested to run matches its predefined code ID. Using this
method, known asauthenticated operation, a secure system
can allow or deny a program’s execution. As shown in the

figure 2 any change to a programs file results in a change
in the cryptographic hash, or code ID of the file. This re-
sulting executable no longer matches the allowable code ID
from the repository and hence is denied access to run as a
trusted program or assess any content sealed under the orig-
inal executables code ID.

Figure 2. Authenticated Operation.

Neither Microsoft’s paper titled ‘A trusted open plat-
form’, nor the paper on Terra title ‘Terra: a virtual machine-
based platform for trusted computing’ discuss how they
plan to address the issue of library calls or interpreters. The
following methods of verification are purely speculative and
designed to provide a basis for the discussion and analysis
of different methods. The assumption is made that utilised
libraries are checked in a similar fashion to the programs,
whereby they are verified using a cryptographic hash and
controlled by an access-control list pending the results of
the verification.

The next question is when a library should be verified.
With dynamic libraries a call to a library is not known un-
til the call is invoked, this process is known as lazy linking
and is most common [7] , hence the only option for veri-
fication is at runtime. Due to this constraint calculating a
code ID representing both the program and its called library
routines requires upfront knowledge of which libraries will
be called. In the case that the library has been verified pre-
viously, the trusted call to the library invokes a check on the
library before it is executed. This is similar to the behaviour
outlined by the NGSCB for handling regular program exe-
cutables. The system becomes complex when a library is
updated or modified, either legitimately or maliciously.

Below are two possible methods for dealing with the ver-
ification of shared libraries.

3.1.1. Dependency Listing.If a program identifies which
libraries it utilises, a code ID may be generated based on

2



Verifying the Integrity of Shared Libraries

the combined cryptographic hashes of the program and its
libraries. The dependency listing would need to state the
code IDs of the required libraries at program install time
to generate the combined hash code. Problems may arise
when different programs require different versions of the
same library to function or the library itself is updated.

3.1.2. Separate Code IDs.Each library has its own code
ID. When a library is verified it is checked against the code
ID for the library. Hence there is no dependencies between
the program and the libraries. This ensures simple upgrad-
ing of libraries, however it does not allow programs to de-
tect modifications of libraries.

An alternative to this approach is to allow the calling
program to include the code ID of the library with its own
code ID. This way the program can identify if the library
has been altered and either the user or an automated process
can determine if the new library is authentic and update its
reference to the library’s code ID is appropriate.

Although it is unclear exactly how NGSCB and Terra
plan to implement library verification, it can be fairly cer-
tain it will involve some form of cryptographic hash. It may
be difficult to create a code ID system that allows the flexi-
bility of library updates while not complicating the process
of updating the verification method for these libraries.

3.2. SPEF

The Secure Program Execution Framework (SPEF) [3]
provides a radically different approach to program exe-
cution control. Similar to NGSCB and Terra, SPEF re-
quires a hardware module to provide a trusted authentica-
tion method. However the way in which execution is lim-
ited is drastically different. When a program is installed,
SPEF manipulates the program binary in a way that creates
a set of constraints specific to the processors unique key.
To quote the paper,“SPEF embeds encrypted, processor-
specific constraints into each block of instructions at soft-
ware installation time and then verifies their existence at
run-time.”

This manipulation of the program binary is merely a
shifting of operations in a trivial manner so as not to change
the logic of the program. This manipulation is performed at
runtime and allows certain constraints specific to the proces-
sors unique secret key to be introduced, thus making trusted
code recognisable by the hardware module. Any code that
does not conform to the constraints will be identified as non-
trusted. Generation of a program binary that conforms to
the processors constraints is claimed to be computationally
intractable. The secret key is stored within the processor
itself and is never written to any memory location. Hence
with out knowledge of the processor’s secret key, genera-
tion of binary code that complies to the constraints would
prove difficult.

Figure 3. Program code before and after SPEF in-
stallation.

The example shown (figure 3) illustrates the logically
trivial manipulation performed by the SPEF system to intro-
duce the processor specific constraints. We can see that op-
eration 2 has been moved down the flow and operation 6 has
been moved up one. Operations 3,4 and 5 have maintained
their order due to their dependency on operation 1. All op-
erations that relied upon a previous operation have retained
their ordering, while operations that are not reliant on other
operations are shifted to create the desired constraints. This
example encapsulates a very simplistic program, in practise
the complexity of the dependencies is much higher.

The implications of a successful implementation of the
SPEF system, as outlined in [3], protects more than just
trusted applications and libraries. Differing attacks per-
formed on a host often inject malicious code into the stack
through exploits similar to a buffer overflow. In the case of
a buffer overflow the code may still be injected, however the
injected code would not conform to the required constraints
of the processors unique key. Hence any form of attack that
attempts to inject malicious code will fail.

4. Discussion

The two integrity verification methods described provide
program execution security in very different ways. The
cryptographic hash method verifies the integrity of the ex-
ecutables and libraries before they are run, while the SPEF
system validates the executables at run time. Both methods
provide a secure base for limiting which programs may be
run on the trusted computer.

In the cryptographic hash system an access-control list
is stored based on the hashes of trusted executables, these
executable are trusted at install time if the programs code
ID matches the code ID provided by the distributor. With
the SPEF system a similar install time method is used to

3



Verifying the Integrity of Shared Libraries

created a trusted executable. A program is installed through
the SPEF installer that creates processor specific program
code. Both methods requires the administrator of the sys-
tem to trust the distributor of the program. A malicious at-
tack on the distributors website or a ‘man in the middle’
attack may trick the administrator in to trusting an installa-
tion that is not provided legitimately through the distributor.
The NGSCB and Terra provide attestation which allows the
administrator to be very sure they are interacting with the
legitimate distributor.

Library routines often require upgrades to remove vul-
nerabilities and faults or to add new functionality. Updating
a library routine on both systems requires a similar proce-
dure to the initial installation. With the SPEF system the
new libraries are installed through the SPEF installer which
can immediately be utilised. However with the crypto-
graphic hash methods the program is installed and checked
against the provide code ID. Due to the change in code ID
of the library, all programs using the library routine now no
longer see a library that matches their recorded code ID.

Using thedependency listingtechnique described earlier
the resulting code ID will no longer match and hence the
program will be denied execution and access to its sealed
storage. It may be possible for the system to inform the
administrator that the library has changed, and ask them if
they wish to update their code ID. This is a very danger-
ous security mechanism as an administrator my agree to the
update hastily if they wish to use the program resulting in
the introduction of potentially malicious code that is now
trusted.

If the separate code IDtechnique is used the upgrading
of the program library will not effect the code ID of the call-
ing program as each program and library has its own code
ID. This technique allows program libraries to be easily up-
graded, but does not provide any notification to the calling
program that the library has changed. In order to inform the
calling program of a library change the calling program may
contain a reference to the libraries code ID. What the calling
program does with this notification is unclear, it may advise
the user that the library has changed or more usefully, cer-
tain programs may only be classified as trusted given certain
versions/code IDs of a library dependency. This would al-
low critical programs to be only usable with libraries that
have been thoroughly tested and verified by the distributor.

In contrast to the code ID based access-control mecha-
nism used by NGSCB and Terra, the SPEF system has a
relatively simple upgrade procedure that is identical to the
SPEF installation procedure. As with the installation pro-
cedure the initial integrity of the program/library can not be
verified through the SPEF system itself.

Many virus and Trojans including Back-
door.Emcommander [8] use vulnerabilities in a program
to cause a buffer overflow allowing complete control

over the compromised computer. The attacking Trojan
injects malicious code into the overflowed buffer on the
stack allowing the Trojan to run arbitrary code. Neither
the NGSCB or the Terra system inhibit such attacks, but
rather ensure the library or program is trusted. With the
SPEF all code running on the machine in trusted mode
is checked against the processor’s unique key. Therefore
when a Trojan attempts to create a buffer overflow the
injected code does not conform to the processor specific
constraints and hence the execution will terminate before
any malicious code is executed.

The SPEF system verifies code based on blocks. The size
of a block is dependant on the implementation. Two exam-
ples given in [3] include the ‘size of the instruction cache
line’ or the ‘pre-fetch buffer’. Each block is verified be-
fore execution begins so no malicious code will ever begin
to execute. When SPEF encounters non-conforming code
the execution is interrupted, this provides a high degree of
safety for the system, however it may cause the program or
library with the vulnerability to fail, causing a program er-
ror. While this is the preferred approach to an attack as the
system is not compromised it may lead to problems. For
example if a library routine is attacked in the early stage of
system boot, the system becomes unusable.

An issue with the SPEF system not outlined in [3] is the
reverse engineering of the processors unique key through
the analysis of the SPEF installed executables and libraries.
While it may be difficult to discover the unique key, the size
of programs and libraries allows for many blocks of code to
be examined which may eventually result in the discovery
of the key. If the key is compromised the entire system be-
comes compromised as all installed programs use the same
key and programs may be installed without the SPEF in-
staller that will run as trusted code.

The two methods for verifying the integrity of shared li-
braries are mutually exclusive. It may be possible to in-
tegrate the two solutions to provide a system that is both
resistant to vulnerabilities in trusted code and provides at-
testation to verify the authenticity of the installed programs.
Systems like the NGSCB provide more than just attesta-
tion and program identity verification, additional features
including the encryption of sensitive data to restrict its ac-
cess to a particular program provide users of such a system
with a highly secure system. Through the combination of
the hardware components and integration of SPEF in to a
trusted computer, as defined by TCPA, authorised programs
and libraries could be installed that are resilient to attacks
that attempt to exploit their vulnerabilities, and can utilise
all features provided by NGSCB, Terra or similar system.

4



Verifying the Integrity of Shared Libraries

5. Conclusion

Both identity verification methods (cryptographic hash
and SPEF) outlined above provide a strong base for run-
ning programs in a trusted environment. While NGSCB and
Terra do not specifically outline how they protect and man-
age libraries, some logical speculative ideas based on the
methods used for protecting regular executables have been
discussed. In contrast the SPEF provides an in-depth view
of how all program code is manipulated to comply with the
specific constraints of the unique processor key.

It can be seen that while the NGSCB provides a more
complete security mechanism providing support not only
for file execution rights, but also encryption of sensitive
data and restricted access to programs and data, its code ID
based executable and library verification method may cause
unwieldy library upgrades. The SPEF system on the other
hand does not guarantee the library version is identical, but
rather that the library was installed through a trusted mea-
sure. This allows for simple library upgrades but a lack of
library version control.

When analysed under the threat of malicious code in-
jection, it can be seen that the cryptographic hash method
will not provide any protection against security vulnerabili-
ties within software programs, but rather it protects the files
stored on the disk. Under the same threat the SPEF will
detect that the injected code does not conform to the pro-
cessors constraints and disallow the attack.

It can be seen that through a combination of crypto-
graphic hash systems, like NGSCB and Terra, and SPEF,
a system that protects the file system and reduces the risk
of software vulnerabilities, could be created to enhance the
security of a trusted computer.

Acknowledgements

The author would like to thank Jason McCamish for helping
with the proof reading of this paper.

References

[1] England, P.; Lampson, B.; Manferdelli, J.; Willman, B,A
trusted open platform, IEEE Computer, Vol.36, Iss.7, July
2003, Pages:55-62

[2] Garfinkel, T.; Pfaff, B.; Chow, J.; Rosenblum, M.; Boneh.
D., Terra: a virtual machine-based platform for trusted com-
puting, ACM Symposium on Operating Systems Principles,
2003, Pages:193-206

[3] Kirovski, D.; Drinic, M.; Potkonjak, M.,Enabling Trusted
Software Integrity, Proceedings of the 10th international con-
ference on Architectural support for programming languages
and operating systems, 2002, Pages:108-120

[4] Trusted Computing Group, Available on:https://www.
trustedcomputinggroup.org/ , 2004-10-22

[5] Arbaugh, B.,Improving the TCPA specification, IEEE Com-
puter ,Volume: 35, Issue: 8, Pages:77-79, August 2002

[6] Huang, A.,The trusted PC: skin-deep security, IEEE Com-
puter, Volume: 35, Issue: 10, Pages:103-105, Oct. 2002

[7] Dean D.,The Security of Static Typing with Dynamic Linking,
ACM Conference on Computer and Communications Secu-
rity, Pages:18-27, 1997

[8] Symantec Security Response - Backdoor.Emcommander,
Available on: http://securityresponse.
symantec.com/avcenter/venc/data/
backdoor.emcommander.html , 2004-10-24

5


